PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL - 2023 MECHANICS OF SOLIDS
(ME Branch)
Time: 3 hours
Max. Marks: 70
Answer all the questions from each UNIT (5X14=70M)

UNIT-IV					
7.	a)	What is the advantage of conjugate beam method over other methods?	[7M]	4	3
	b)	A beam AB simply supported at the ends is 8 m long. It carries a uniformly distributed load of intensity $10 \mathrm{kN} / \mathrm{m}$ over a length of 4 m starting at a distance of 4 m from left end support together with a concentrated load of 48 kN at a distance of 2 m from left end support. Find using Macaulay's method (i) slope at each end (ii) Deflection at the centre and (iii) maximum deflection. Take young's modulus $=200 \mathrm{kN} / \mathrm{mm}^{2}$ and moment of inertia $=$ $6.5 \times 10^{8} \mathrm{~mm}^{4}$.	[7M]	4	2
OR					
8.	a)	A beam 3 m long, simply supported at its ends, is carrying a point load W at the centre. If the slope at the beam should not exceed 1°, find the deflection at the centre of the beam.	[14M]	4	3
		A beam of length l is simply supported at the ends and carries a concentrated load W at a distance 'a' from each end. Find using conjugate beam method the slope at each end and under each load. Find also the deflection under each load and at the centre.			
UNIT-V					
9.		cylindrical shell 100 cm long 18 cm internal diameter having thickness of metal as 8 mm is filled with fluid at atmospheric pressure. If an additional 20 cm^{3} of fluid is pumped into cylinder find (i) the hoop stress induced. Take Young's modulus $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio $=0.3$	[7M]	5	3
	b)	Derive an expression for radial pressure and hoop stress for a thick cylindrical shell	[7M]	5	4
OR					
10.	a)	A cylindrical thin drum 80 cm in diameter and 3 m long has a shell thickness of 1 cm . If the drum is subjected to an internal pressure of 2.5 $\mathrm{N} / \mathrm{mm} 2$, determine (i) Change in diameter (ii) Change in length and Change in volume. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, Poisson's ratio $=0.25$.	[10M]	5	3
	b)	A spherical shell of internal diameter 0.9 m and of thickness 10 mm is subjected to an internal pressure of $1.4 \mathrm{~N} / \mathrm{mm} 2$. Determine the increase in diameter and increase in volume. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, Poisson's ratio $=$ $1 / 3$.	[4M]	5	4

